Интересное. Оценка вкусовой чувствительности Смотреть что такое "вкусовая чувствительность" в других словарях

Вкус - ощущение, возникающее при действии какого-либо вещества на вкусовые рецепторы языка и слизистой оболочки рта. В процессе эволюции вкус формировался как сенсорный механизм, способствующий выбору «хорошей» пищи, из чего следует, что вкусовые ощущения влияют на наши пищевые предпочтения. Кроме того, раздражение вкусовых рецепторов приводит к возникновению многочисленных врожденных (безусловных) рефлексов, управляющих деятельностью органов пищеварения. При этом в зависимости от свойств пищи секрет, выделяемый пищеварительными железами, может существенно изменять свой состав.

Вкусовые рецепторы - клетки, раздражение которых вызывает вкусовые ощущения. Большая часть их располагается на языке. Кроме того, вкусовые рецепторы расположены на задней стенке глотки, мягком небе и надгортаннике. Рецепторные клетки объединены во вкусовые почки (луковицы), а они собраны в три вида сосочков - грибовидные, желобовидные и листовидные.

Различные участки языка по-разному чувствительны к вкусовым модальностям. Основание языка, где преобладают желобовидные сосочки, наиболее чувствительны к горькому, кончик языка (на нем в основном грибовидные сосочки) - к сладкому, боковые части языка (листовидные сосочки) - к кислому и соленому.

Вкусовая почка лежит в толще многослойного эпителия. Она имеет форму луковицы и состоит из опорных, рецепторных и базальных клеток. В каждой почке несколько десятков клеток. Почки не достигают поверхности слизистой оболочки и связаны с ней через небольшие каналы - вкусовые поры. При этом рецепторные клетки образуют на своей вершине микроворсинки, находящиеся в общей камере непосредственно под порой. Вкусовые рецепторы - самые короткоживущие сенсорные клетки организма. Продолжительность жизни каждой из них около 10 дней, после чего так же, как и в случае обонятельной системы, из базальной клетки формируется новый рецептор. У взрослого человека 9-10 тысяч вкусовых почек. С возрастом часть их атрофируется.

Вкусовые рецепторы - вторичночувствующие. Сенсорные нейроны, которые проводят вкусовую информацию в ЦНС, - это псевдоуниполярные нейроны, входящие в состав ганглиев лицевого (VII пара), языкоглоточного (IX пара) и блуждающего (X пара) черепных нервов. Периферические отростки этих нейронов подходят к вкусовым рецепторам, и при достаточно сильном возбуждении рецепторов в ЦНС проводятся нервные импульсы. Вкусовые волокна оканчиваются на чувствительном ядре, расположенном в продолговатом мозге (ядро одиночного пути). Через это ядро поддерживается связь с безусловнорефлекторными центрами, осуществляющими простейшие рефлексы, например, слюноотделение, жевание, глотание. Горький вкус является сигналом для запуска ряда оборонительных реакций (выплевывание, рвота и т.п.).

Большая часть аксонов ядра одиночного пути перекрещивается, поднимается вверх к таламусу (где оканчивается на нейронах заднего вентрального ядра) и далее - к коре больших полушарий. В настоящее время выяснено, что вкусовые центры находятся в островковой доле коры, а также у нижнего конца центральной борозды (поле 43). Некоторое количество аксонов, идущих из продолговатого мозга, заканчивается в гипоталамусе. Они вносят свой вклад в управление уровнем пищевой и оборонительной мотиваций, генерацию положительных и отрицательных эмоций, а также определяют неосознанные пищевые предпочтения.

Выделяют пять основных вкусовых модальностей: сладкую, соленую, кислую, горькую и умами. Последняя модальность обозначается японским словом, обозначающим вкус глутамата натрия (хорошо выраженный мясной вкус). При изучении их особенностей применяют растворы различных веществ, которые капельно наносятся на разные участки языка. Как эталонное сладкое вещество применяют глюкозу, кислое - соляную кислоту, соленое - хлористый натрий (поваренная соль, NaCl), горькое - хинин. Каждая рецепторная клетка наиболее чувствительна к определенной вкусовой модальности, но отвечает и на другие виды вкусовой стимуляции (обычно значительно слабее, т.е. с более высоким порогом реакции).

«Сладкие», «горькие» и «умами» молекулы взаимодействуют с мембранными рецепторами, что в конечном итоге приводит к выбросу медиатора в синапсах между рецепторными клетками и волокнами сенсорных клеток и проведению нервных импульсов в ЦНС. Механизм генерации рецепторного потенциала при восприятии соленого и кислого вкуса отличается от обычного принципа работы хеморецепторов. В «соленых» рецепторных клетках присутствуют открытые натриевые каналы. Соленая пища содержит большое количество ионов Na + , поэтому он диффундирует (входит) внутрь вкусовых клеток, вызывая деполяризацию. Она в свою очередь приводит к выбросу медиатора. Кислый вкус вызывается большой концентрацией ионов водорода (Н +) в кислых продуктах. Входя в рецепторную клетку, они также вызывают деполяризацию.

Кроме вкусовых, в ротовой полости находятся также кожные рецепторы. В нормальных условиях целостное вкусовое восприятие формируется при их участии (определение консистенции пищи, ее температуры и т.п.). Более того, через тактильные рецепторы опосредуются такие, на первый взгляд, вкусовые ощущения, как ментоловое и жгучее (острое). В формирование вкусового восприятия вносит свой вклад и обонятельный анализатор. При нарушении обоняния (например, во время насморка) вкусовые ощущения значительно снижены.

Пороги чувствительности вкусовых рецепторов очень индивидуальны для разных людей (часть отличий генетически задана) и могут изменяться в зависимости от многих условий. Например, порог к хлористому натрию (поваренная соль) уменьшается при его удалении из пищи и увеличивается при беременности. Вкусовое ощущение зависит также от концентрации вещества. Так, максимально сладок 20% раствор сахара, максимально соленый 10% раствор хлористого натрия, максимально кислый 0,2% раствор соляной кислоты, максимально горький 0,1% раствор хинина. При дальнейшем повышении концентраций вкусовые ощущения уменьшаются. Зависят вкусовые ощущения и от температуры: «сладкие» рецепторы наиболее чувствительны при температуре пищи около 37С, «соленые» - примерно при 10С, при 0С вкусовые ощущения исчезают.

Как и все остальные сенсорные системы, вкусовая способна адаптироваться к постоянно действующему стимулу, и при длительном возбуждении рецепторов их порог увеличивается. Адаптация к одному из вкусовых ощущений часто снижает пороги для остальных. Это явление называется вкусовым контрастом. Например, после ополаскивания рта слабо подсоленным раствором чувствительность к другим вкусовым модальностям увеличивается.

Вкус - это ощущение, возникающее в результате влияния пищевых веществ на рецепторы, расположенные на поверхности языка и в слизистой оболочке ротовой полости. Вкус относится к контактным видам чувствительности, является мультимодальным ощущением, т.е. сложной суммой возбуждений, вызываемых раздражением одно­временно вкусовых, обонятельных, а также тактильных, температур­ных и болевых рецепторов. Причём, прежде всего в слизистой обо­лочке возбуждаются тактильные рецепторы, несколько позже - темпе­ратурные, а затем вкусовые хеморецепторы.

Слизистая оболочка, покрывающая ротовую часть языка, образует мелкие выпячивания, называемые сосочками. У человека имеется 3 типа сосочков: нитевидные, грибовидные и желобоватые, в которых находятся вкусовые хеморецептры, называемые вкусовыми лу­ковицами или почками. При исследовании под световым микроско­пом было установлено, что вкусовые луковицы содержат поддержи­вающие (опорные) клетки, между которыми располагаются рецепторные клетки. Опорные клетки группируются вокруг мелкого углуб­ления, сообщающегося с поверхностью посредством вкусовой поры. В электронном микроскопе видно, что апикальная поверхность рецепторных вкусовых клеток покрыта микроворсинками. Между микро­ворсинками во вкусовой ямке находится электронно-плотное вещест­во с высокой активностью фосфатаз и значительным содержанием рецепторного белка и гликопротеидов. Это вещество играет роль адсорбента для вкусовых веществ, попадающих на поверхность язы­ка. В каждую вкусовую почку входит и разветвляется около 50 аффе­рентных нервных волокон, которые образуют синаптические контакты с базальной мембраной рецепторных клеток. На одной рецепторной клетке могут быть окончания нескольких нервных волокон, а одно волокно кабельного типа может иннервировать несколько вкусовых почек.

В числе "первичных" вкусовых ощущений различают сладкое, солё­ное, горькое и кислое. Кончик языка наиболее чувствителен к слад­кому, средняя часть - к кислому, корень - к горькому, боковые края - к солёному и кислому. Кислый вкус связывают с присутствием в веще­стве протонов водорода. Остальные вкусовые ощущения, как правило, невозможно связать с химическим строением вещества. Обычно вкусовые ощущения смешанные, поскольку раздражитель отличается сложным составом и объединяет несколько вкусовых качеств. Сход­ным вкусом могут обладать резко отличающиеся по химической структуре вещества, а оптические изомеры одного вещества могут иметь разный вкус. Ощущение вкуса возникает лишь в том случае, когда вещество, входящее в контакт со вкусовой луковицей, растворено в воде. Так, сухой сахар, положенный на осушенный фильтровальной бумагой язык, представляется безвкусным.

В естественных условиях вкусовое ощущение весьма сложно, и зависит от сочетания четырех первичных вкусовых качеств, возникающих при раздражении вкусовых рецепторов – сладкого, соленого, горького и кислого .

Наиболее чувствителен к сладкому кончик, к горькому – корень, к кислому – края, соленому – кончик и края языка. Зоны, чувствительные к каждому из этих раздражителей, перекрывают друг друга, и любое вкусовое ощущение может быть вызвано с различных областей языка. При этом, однако, приходится варьировать концентрации растворов. Так, ощущение сладкого с корня языка возникает при больших концентрациях, чем с его кончика (Рис.10).

Рисунок Вкусовые зоны языка

Теория вкуса.

Каждая вкусовая клетка, по-видимому, способна реагировать на не­сколько вкусовых стимулов. Поэтому считается, что разли­чение вкусов основано на опознавании комплексных реакций боль­шого числа чувствительных клеток.

Вкусовая рецепторная клетка относится к вторично-чувствующим рецепторам, возбуждается благо­даря взаимодействию молекул вкусового специфического вещества с белковыми рецепторными молекулами, локализованными в мембра­не микроворсинок вкусовой клетки. При этом рецепторная молекула меняет свою структуру, происходит её конформационное преобразо­вание, которое приводит к изменению ионной проницаемости клеточ­ной мембраны и развитию деполяризации, которая называется рецепторным потенциалом (РП). РП распространяется электротонически к синаптической области клетки. Далее процессы развиваются в том же порядке, как и в любом синапсе. В пресинаптической мем­бране активируются потенциалзависимые кальциевые каналы, через которые ионы кальция проникают в клетку. Под влиянием вошедше­го кальция происходит слияние синаптических пузырьков с пресинаптической мембраной и выделе­ние медиатора (серотонина или норадреналина) в синаптическую щель. Действие медиатора на постсинаптическую мембрану, пред­ставленную плазматической мембраной чувствительного нервного волокна, вызывает генерацию распространяющегося потенциала действия по афферентным волокнам (рисунок 9).

Рисунок Механизм возбуждения вкусовых рецепторных клеток

Нервные волокна вкусовой чувствительности не обладают выражен­ной специфичностью к раздражению тем или иным химическим ве­ществом. Однако, все рецепторы, иннервируемые одним волокном, имеют одинаковый спектр вкусовой чувствительности. Частота разря­да в одиночных волокнах зависит от концентрации и качества сти­мула. Обычно частота разряда повышается в течение первых 50 мсек, а затем снижается и остаётся постоянной, пока действует раз­дражитель (адаптация рецепторов).

Пути вкусовой чувствительности. Афферентные волокна от вкусо­вых рецепторов вместе с волокнами от болевых, тактильных и тем­пературных рецепторных клеток языка входят в состав лицевого и языкоглоточного черепномозговых нервов и идут в ядро одиночного пучка продолговатого мозга, где находятся нейроны второго порядка. Аксоны этих нейронов после частичного перекреста в составе меди­альной петли подходят к вентральным ядрам таламуса. Далее вкусовой путь идёт к коре больших полушарий и заканчивается в лате­ральной части постцентральной извилины.

Расстройства вкуса могут проявляться в виде потери вкусовой чувствительности-агевзия, понижения - гипогевзия, повышения -гипергевзия, извращения - парагевзия. Кроме того, бывают рас­стройства точного анализа вкусовых веществ - дисгевзия и даже вкусовые галлюцинации.

Исследование чувствительности вкусового анализатора проводится методом определения порога вкусового ощущения, а также мето­дом определения функциональной лабильности вкусовых рецепто­ров (по Снякину П.Г.). С помощью данного метода было установлено, что количество функционирующих вкусовых сосочков языка непосто­янно, оно всё время меняется. Наибольшее их количество функцио­нируют натощак, т.е. когда сильна мотивация голода. После приёма пищи число функционирующих сосочков уменьшается. Подобная реакция вкусовых сосочков является результатом рефлекторных влияний с желудка, возникающих при раздражении его пищей. Этот феномен называется гастролингвальным рефлексом, где вкусовые рецепторы выступают в роли эффекторов. Таким образом, на актив­ность вкусового рецепторного аппарата влияет выраженность биоло­гической мотивации голода.

Основные характеристики деятельности вкусового анализатора . Одной из важнейших характеристик сенсорной системы является абсолютный порог чувствительности, т.е. минимальная концентрация химического вещества, вызывающая у человека вкусовое ощущение. Для разных веществ он различен. Так, для сахара минимальный порог равен 0,01М, для поваренной соли - 0,05 М., для соляной кислоты – 0.0007 М, для солянокислого хинина – 0, 0000001 М раствора.

Пороговые величины вкусовой чувствительности индивидуальны. Причем возможно избирательное повышение абсолютного порога к отдельным веществам, вплоть до полной «вкусовой слепоты». Различия во вкусовых порогах характерны не только для разных людей, но и для одного и того же человека в различных состояниях (болезнь, беременность, усталость и т.п.).

Определенную ценность имеет исследование дифференциальных порогов , когда определяется величина минимально ощутимой разницы в восприятии одного и того же вкусового раздражителя при переходе от одной концентрации к другой. Показано, что дифференциальный порог при переходе от слабых концентраций к более сильным понижается и в пределах средних концентраций наблюдается увеличение различительной чувствительности. Она вновь уменьшается при переходе к сильным концентрациям. Так, 20% раствор сахара является максимально сладким, 10% раствор поваренной соли – максимально соленым, 0,2% раствор соляной кислоты – максимально кислым, 0,1% раствор солянокислого хинина – максимально горьким.

Заболевания слизистой оболочки полости рта, поражающие её рецепторные структуры, и заболевания желудочно-кишечного тракта вызывают потерю вкуса.

Помимо вкусовой чувствительности соматосенсорный анализатор полости рта включает в себя тактильную, температурную и болевую чувствительность. Изучение тактильной чувствительности (рецепторы прикосновения и давления-тельца Мейснера, диски Меркеля и сво­бодные нервные окончания) показало неравномерное распределе­ние рецепторов в различных отделах челюстно-лицевой области. Наибольшей чувствительностью обладает кончик языка и красная кайма губ. Верхняя губа имеет большую чувствительность, чем ниж­няя. Сравнительно высокой чувствительностью обладает слизистая оболочка твёрдого нёба, наименьшей - слизистая поверхность на­ружной (вестибулярной) поверхности дёсен. Изучение тактильного восприятия в участках, которые покрываются зубными протезами и являются так называемым протезным ложем, очень важно, и позволяет выявить индивидуальные особенности адаптации к зубным про­тезам у стоматологических больных.

Температурные восприятия осуществляются рецепторами тепла (тельца Руффини), холода (кол­бы Краузе) и свободными нервными окончаниями. Тепловая чувстви­тельность постепенно возрастает от передних отделов полости рта к задним, а холодовая наоборот. Слизистая оболочка щёк мало чувст­вительна к холоду и ещё меньше к теплу. Восприятие тепла полно­стью отсутствует в центре твердого нёба, а центральная часть спин­ки языка не воспринимает ни холодовые, ни тепловые воздействия. Высокой чувствительностью к температурным раздражениям обладают кончик языка и красная кайма губ, так как при приеме пищи именно эти области раздражаются первыми, зубы обладают как холодовой, так и тепловой чувствительностью. Порогом холодовой чувствительности для резцов является температура в среднем 20 гр., для остальных зубов 13 гр. Порогом тепловой чувствительности для резцов является температура 52 гр., для остальных зубов 60-67 гр. Если температурные раздражения вызывают в зубе адекватные ощущения, это свидетельствует о том, что со стороны пульпы патоло­гии нет. Для исследования температурной чувствительности зубов проводят орошение водой высокой и низкой температуры или исполь­зуют ватный тампон, смоченный в эфире, который, быстро испаряясь, охлаждает зуб. При кариесе термическое раздражение сопровожда­ется болью. Депульпированный зуб на такие раздражители не реаги­рует.

Температура слизистой оболочки рта обусловлена рядом факторов: температурой и влажностью внешней среды, интенсивностью клеточного метаболизма, анатомо-физиологическими особенностями тканей, состоянием их сосудистой сети. Последнее зависит от количества капилляров и степени их наполнения, а также от скорости движения крови в артериолах. Указанные обстоятельства объясняют различную топографию температурных показателей органов полости рта.

Температура слизистой оболочки рта зависит также от испарения слюны с поверхности слизистой, например, при ротовом дыхании. Это является одним из механизмов теплоотдачи, обеспечивающим поддержание температурного гомеостаза организма. Кроме того, в функциональную систему терморегуляции включается действие слюны и слизистой оболочки органов полости рта, выравнивающее температуру пищи.

Установлено, что каждый участок слизистой оболочки имеет определенную температуру. Средняя температура кожи нижней губы равна 33,1 о С, а верхней – 33,9 о С; в зоне границы кожи и красной каймы губ температура снижается. Температура слизистой оболочки рта повышается в каудальном направлении. Температура твердого неба выше в дистальных отделах и при удалении от средней линии.

Температура зуба также колеблется в различных его участках с определенной закономерностью: на режущем крае и жевательной поверхности температура ниже (30,4-30,5 о С), чем в пришеечной области (30,9 о С). При исследовании зубов как верхней, так и нижней челюсти установлена тенденция к постепенному повышению температуры во всех областях коронки по направлению от центральных резцов к большим коренным зубам.

Исследование температуры органов и тканей челюстно-лицевой области можно проводить методом контактной электротермометрии и методом термовизиографии позволяющим исследовать температуру на расстоянии. Эти исследования имеют определенное значение в клинике, так как нарушение термометрических показателей может свидетельствовать об изменении трофики тканей и воспалительных процессах в полости рта. Исходную температуру слизистой оболочки рта и кожи челюстно-лицевой области необходимо учитывать при назначении лечения теплом или холодом. Так, например, при поражении лицевого нерва в соответствующих зонах иннервации на лице температура может снижаться на 8-10 о С. Назначение обычных тепловых процедур в таких случаях может вызвать чувство температурного дискомфорта, и даже боль.

Термометрия зуба играет огромную роль в разработке рациональных способов препарирования зуба в таком режиме, при котором тепловая травма эмали, дентина и пульпы была бы минимальной. Врач-стоматолог должен помнить, что при формировании кариозной полости или препарировании зуба под коронку происходит нагревание его тканей вследствие сопротивления (трения) действующего режущего (шлифующего) инструмента. Повышение температуры зуба выше 45 о С может явиться причиной ожога эмали и дентина и привести к термической травме пульпы. Для предотвращения этих явлений необходимо тщательно подбирать инструменты, учитывая величину и форму бортов и препаровальных дисков, скорость их вращения, а также материалы, из которых они изготовлены. Кроме того, следует строго соблюдать режим работы. Важными условиями являются прерывистость препарирования и использование высокоскоростных бормашин. При этом значительно ускоряется операция сошлифовывания твердых тканей, уменьшается давление и вибрация режущего инструмента и при достаточном охлаждении предупреждается ожог тканей зуба. Особое значение придается виду охлаждения, исправности охлаждающей системы и правильному направлению струи воды на место контакта режущего инструмента с твердыми тканями зуба.

При приеме пищи слизистая рта может подвергаться температурным воздействиям, значительно отличающимся от температуры тела. Холодные блюда или напитки редко вызывают повреждение слизистой оболочки, потому что потребляемое их количество обычно невелико и находятся они в полости рта короткое время. Охлаждение влияет на кровообращение слизистой оболочки следующим образом: сначала возникает спазм сосудов, при углублении охлаждения он усиливается, и микроциркуляция почти полностью прекращается. Резкое охлаждение, например, хлорэтилом, не разрушает ткани, и после прекращения его действия их функция восстанавливается. Под влиянием тепла в слизистой оболочке развивается гиперемия, а вслед за ней – отек окружающих тканей. Горячие блюда, нагретые в процессе работы зубоврачебные инструменты и другие, попавшие в рот, горячие предметы могут вызвать ограниченный некроз слизистой оболочки. На месте ожога возникает пузырь, который вскоре вскрывается с образованием эрозии.

Болевая чувствительность. Болевые рецепторы представлены свободными неинкапсулированными нервными окончаниями, имею­щими разнообразную форму (волосков, спиралей, пластинок и др.). Наиболее подробно изучена болевая чувствительность слизистой оболочки альвеолярных отростков и твёрдого нёба, т.е. участков протезного ложа. Наибольшей болевой чувствительностью обладает участок слизистой на вестибулярной поверхности нижней челюсти в области боковых резцов. На внутренней поверхности щеки имеется узкий участок, лишённый болевой чувствительности. Самое большое количество болевых рецепторов находится в зубе. Так на 1 см 2 ден­тина расположено от 15 до 30 тысяч болевых рецепторов, на гра­нице эмали и дентина их количество доходит до 75 тысяч, а на 1 см 2 кожи не более 200 болевых рецепторов . Раздражение болевых ре­цепторов пульпы вызывает исключительно сильное болевое ощуще­ние. Даже лёгкое прикосновение вызывает острую боль. Поэтому зубная боль относится к самым жестоким болям. Зубная боль возникает при поражении зуба патологическим процессом. Лечение зуба прекращает процесс и боль исчезает. Но и само лечение является чрезвычайно болезненным процессом. При протезировании зубов иногда приходится препарировать здоровый зуб, что также может приводить к возникновению боли. В основном боль локализуется в области больного зуба, но может иррадиировать в глазное яблоко, лобную, височную, и затылочную область головы. При заболевании нескольких зубов может возникнуть диффузная головная боль. В ме­ханизме возникновения головной боли одонтогенного происхождения играют роль раздражения чувствительных окончаний второй и треть­ей ветвей тройничного нерва и нервных вегетативных узлов. Болевые ощущения возникают при воспалительных процессах, локализующих­ся в полости рта: стоматитах, глосситах, при явлениях гальванизма (гальванический синдром – образование электрического тока в полости рта. Причиной гальванизма является присутствие в полости рта разнородных металлов. Для изготовления зубных протезов применяют различные металлы и сплавы: кобальтохромовые, серебряно-палладиевые сплавы, нержавеющие стали, сплавы на основе золота, платины и др. В состав которых входят металлы: хром, никель, железо, титан, марганец, молибден, кремний, кобальт, палладий, цинк, серебро, золото и др. Если в полости рта находятся сплавы металлов с различными потенциалами, то образуются гальванические токи. Роль электролита выполняет слюна. Гальванизм проявляется следующими симптомами: металлический вкус во рту, чувство кислоты, извращение вкуса, жжение языка. Может появиться раздражительность, головные боли, общая слабость, сухость во рту.). Лицевые боли, обусловленные поражением нервов лица и челюстей называются прозопалгиями (prosopon - лицо, algos - боль, греч.) Если они являются результатом поражения чувствительных нервов, то их называют стомалгиями, если вегетативных - то симпаталгиями.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Кафедра Физиологии

Физиология вкуса

Введение

1. Морфология органов вкуса; субъективная физиология вкуса. Ориентация и строение вкусовых почек

2. Центральные связи

3. Основные вкусовые ощущения

4. Интенсивность ощущений

5. Объективная физиология вкуса

6. Первичный процесс

7. Роль вкусовой чувствительности

Литература

Введение

Человек и животное непрерывно получают информацию о бесконечном многообразии изменений, которые происходят во внешней и внутренней среде. Это осуществляется благодаря наличию у организма специализированных структур, которые получили название анализаторы (сенсорные системы).

Под анализаторами понимают совокупность образований, обеспечивающих восприятие энергии раздражителя, трансформацию ее в специфические процессы возбуждения, проведение этого возбуждения в структуры ЦНС и к клеткам коры, анализ и синтез специфическими зонами коры этого возбуждения с последующим формированием ощущения.

Понятие об анализаторах введено в физиологию И. П. Павловым в связи с учением о высшей нервной деятельности. Каждый анализатор состоит из трех отделов:

Периферический или рецепторный отдел, который осуществляет восприятие энергии раздражителя и трансформацию ее в специфический процесс возбуждения.

Проводниковый отдел, представленный афферентными нервами и подкорковыми центрами, он осуществляет передачу возникшего возбуждения в кору головного мозга.

Центральный или корковый отдел анализатора, представленный соответствующими зонами коры головного мозга, где осуществляется высший анализ и синтез возбуждений и формирование соответствующего ощущения.

Роль анализаторов при формировании приспособительных реакций чрезвычайно велика и многообразна. Согласно концепции функциональной системы П. К. Анохина формирование любой приспособительной реакции осуществляется в несколько этапов. Анализаторы принимают непосредственное участие в формировании всех этапов функциональной системы. Они являются поставщиками афферентных посылок определенной модальности и различного функционального назначения, причем, одна и та же афферентация может быть обстановочной, пусковой, обратной и ориентировочной в зависимости от этапа формирования приспособительной деятельности.

вкус физиология анализатор орган

1. Морфология органов вкуса; субъективная физиология вкуса. Ориен тация и строение вкусовых почек

Язык у человека покрыт слизистой оболочкой, складки которой во многих местах образуют маленькие выпуклости в форме колышков, называемые сосочками

Эти три типа распределены по-разному. Только грибовидные сосочки рассеяны по всей поверхности.Желобоватые сосочки, которых у человека всего 7-12, сверху имеют вид круглых образований 1-3 мм в диаметре; они находятся в ограниченной зоне поперек спинки языка у его корня. Третий тип, листовидныесосочки, образуют тесно расположенные складки вдоль задних краев языка. Они хорошо развиты у детей, но гораздо менее выражены и менее многочисленны у взрослых.

Нитевидные сосочки, занимающие остальную поверхность языка, не показаны на рис. 1, потому что в них нет вкусовых почек. Название «почка» говорит о форме этих органов (рис. 2). Положение их на сосочках варьирует; в случае желобоватых и листовидных сосочков много вкусовых почек заложено в боковых стенках, а на верхушке их нет. В грибовидных сосочках вкусовые почки ограничены поверхностью «шляпки гриба», которая может достигать 1 мм в диаметре.

Отдельная вкусовая почка имеет около 70 мкм в высоту и около 40 мкм в диаметре. Всего у человека около 2000 вкусовых почек, из них около половины-на желобоватых сосочках. Каждая вкусовая почка содержит 40-60 отдельных клеток.

В соединительную ткань под желобоватыми и листовидными сосочками погружены серозные железы, протоки которых открываются в углубления у основания сосочка, их секрет служит для смывания частиц пищи и микроорганизмов. Кроме того, он понижает концентрацию стимулирующего вещества вблизи вкусовых почек.

Внутри вкусовых почек различают три типа клеток: сенсорные, опорные и базальные (рис. 2). Растворимые в воде вещества, попадающие на поверхность языка, диффундируют через пору в наполненное жидкостью пространство над вкусовой почкой; здесь они соприкасаются с мембранами микровиллей, которые образуют наружные концы сенсорных клеток. Вкусовые рецепторы представляют собой вторичные сенсорные клетки без аксонов, которые проводят импульсы в центральном направлении. Их ответы передаются афферентными волокнами, которые образуют синапсы близ оснований сенсорных клеток. На рис. 2 показаны только два волокна, но в действительности в каждую вкусовую почку входят и разветвляются в ней около 50 волокон.

Продолжительность жизни сенсорных клеток во вкусовых почках невелика; происходит их непрерывная смена. В среднем одна сенсорная клетка замещается новой уже через 10 дней. За сменой клеток можно проследить, помечая их ядра 3Н-тимидином и определяя число меченых ядер, сохранившихся через некоторое время. Утраченные сенсорные клетки замещаются новыми, которые образуются из базальных клеток. При этой смене должны прерваться синапсы между афферентными волокнами и старыми клетками и возникнуть новые синапсы. В связи с такой перестройкой возникает много интересных вопросов, особенно если учесть тот факт, что сенсорные клетки различаются по своей чувствительности к разным стимулам. Так, смена сенсорных клеток может привести к изменению «вкусового профиля» - характерной формы ответов в афферентных волокнах, о чем пойдет речь в следующем разделе.

2. Центральные связи

Афферентные волокна, проводящие ответы от скоплений вкусовых луковиц, распределяются по двум черепномоз-говым нервам -лицевому (VII) и языкоглоточному (IX). Такое деление обычно соответствует областям языка, которые снабжаются этими волокнами. Так, волокна от желобоватых и листовидных сосочков идут преимущественно в составе языкоглоточного нерва, а волокна от грибовидных сосочков в передней части языка входят в барабанную струну (chorda tympani), ветвь лицевого нерва. У детей имеются добавочные вкусовые органы в эпителии мягкого нёба и задней стенки глотки до гортани; они иннервируются главным образом блуждающим нервом (X).

В головном мозгу вкусовые волокна на каждой стороне объединяются в солитарный тракт. Он оканчивается в продолговатом мозгу, в ядре солитарного тракта, где афферентные волокна образуют синапсы с нейронами второго порядка. Аксоны этих нейронов идут к вентральному таламусу в составе медиального лемниска. Третья совокупность нейронов связывает эту область с корой больших полушарий. Вкусовые зоны коры расположены в латеральной части постиентральной извилины.

3. Основные вкусовые ощущения

В обычных условиях, например при еде, слизистая ротовой полости подвергается действию сложных стимулов, включающих несколько модальностей. Благодаря тому, что ротовая полость сообщается с носовой, пахучие вещества могут достичь обонятельных рецепторов в носу и вызвать другие ощущения. Кроме того, в слизистой оболочке рта и языка имеются терморецепторы, механорецепторы и болевые волокна, которые тоже подвергаются стимуляции. То, что обычно называют «вкусом», в действительности является мультимодальным ощущением, в котором на собственно вкусовые ощущения накладываются ощущения запаха, тепла или холода, давления и, возможно, даже боли.

Существуют четыре четко различимых основных вкусовых ощущения: сладкое, кислое, соленое и горькое.

Пороги обнаружения для разных качеств приходятся на разные концентрации. Пороговая концентрация сернокислого хинина (8 мкмоль/л, или 0,006 г/л) служит хорошим примером того, что вещества с горьким вкусом обнаруживаются при очень низких концентрациях. Порог обнаружения для сахарина составляет 23 мкмоль/л (0,0055 г/л), для виноградного сахара-0,08 моль/л, а для тростникового сахара-0,01 моль/л (соответственно 14,41 и 3,42 г/л). Эти данные характерны, и они показывают, что пороги для моно- и дисахаридов значительно выше, чем для синтетических сладостей. Пороги для уксусной кислоты (0,18 моль/л, или 0,108 г/л) и столовой соли (0,01 моль/л, или 0,585 г/л) служат иллюстрацией того общего правила, что пороги для кислого и соленогоприблизительно того же порядка, что и для указанных выше сахаридов. Пороги для кислот приблизительно отражают степень их диссоциации. Сравнение порогов для виноградного и тростникового Сахаров говорит о том, что раствор виноградного сахара должен быть более концентрированным, чем раствор тростникового сахара, для того чтобы они были одинаково сладкими. Экспериментальная проверка растворов разных надпороговых концентраций соответствует этому различию.

Но польза от таких точных пороговых данных ограничена, потому что для большинства веществ пороги подвержены значительной индивидуальной вариабельности. Разумнее было бы говорить о диапазоне пороговых значений

4. Интенсивность ощущений

Простое сравнение разных растворов показывает, что интенсивность вкусового ощущения зависит отконцентрации вещества. При определении порогов обнаружено, что эффект от разбавления раствора стимулирующего вещества может быть компенсирован стимуляцией большей поверхности языка, т.е. большего числа рецепторов Вероятно, это происходит благодаря пространственной суммации. В пороговой области существует входное соотношение между концентрацией и продолжительностью действия стимула. Кроме того, следует помнить, что чувство вкуса подвержено определенной адаптации -при длительном действии стимула интенсивность ощущения снижается. Еще одним фактором является секреция серозных желез, которая разжижает действующее у вкусовых луковиц вещество и тем самым влияет на интенсивность ощущения.

Испытание ряда разведений солевых растворов в околопороговой области во многих случаях показывает, что ощущение может менять свое качество в зависимости от концентрации. Растворы столовой соли 0,02-0,03 моль/л имеют сладкий вкус, а в концентрации 0,04 моль/л или больше -- соленый. Этот сдвиг качества, вероятно, можно понять, исходя из того, что вкусовые волокна обладают широким спектром чувствительности в пределах каждого качества.

Разные области языка у человека варьируют по чувствительности к четырем основным качествам. Кончик языка особенно чувствителен к сладким веществам, средние части краев отвечают лучше всего на кислые стимулы. Соленые стимулы всего эффективнее в области края языка, которая частично перекрывает первые две. Горькие вещества сильнее всего действуют на рецепторы близ корня языка, в области желобоватых сосочков. Поэтому повреждение языкоглоточного нерва понижает способность к обнаружению горечей, а после блокады проведения в лицевом нерве обнаруживаются только они одни.

5. Объективная физиология вкуса

Способность к различению вкусовых качеств зависит от специфичности рецепторных молекул в мембранах сенсорных клеток. Для регистрации активности как отдельных сенсорных клеток, так и афферентных волокон можно воспользоваться микроэлектродами. Такие записи показывают, что ни сами рецепторы, ни волокна, идущие к ЦНС, не дают качественно специфических ответов; как правило, эффективными оказываются стимулы более чем одной категории. Очевидно, что каждое волокно реагирует на стимулы нескольких категорий, но при рассмотрении разных градаций чувствительности выявляются различия. Иными словами, стимуляция раствором вещества в определенной концентрации активирует различные волокна в разной степени. Характер возбуждения, типичный для каждого отдельного волокна при ответах на ряд веществ, называется вкусовым профилем. Волокнами, наиболее близкими к качественной специфичности, являются те, которые реагируют на растворы Сахаров увеличением частоты разрядов. Сравнительные исследования показали, что такие относительно специфичные волокна особенно характерны для обезьян.

Регистрация активности отдельных сенсорных клеток показала, что они обладают градуальной относительной специфичностью. Ответы волокон, идущих от этих клеток, в этом отношении отражают ответы клеток. Но афферентные волокна ветвятся во вкусовых луковицах, так что каждое волокно получает возбуждение от многих сенсорных клеток, которые, надо полагать, различаются по степени специфичности. Кроме того, обнаружено, что сенсорные клетки в разных сосочках образуют синапсы с коллатералями от одного афферентного волокна. Это значит, что вкусовые волокна получают входы от сенсорных клеток, распределенных по значительным участкам языка. Эти участки называются рецептивными полями. Ситуация с рецептивными полями усложняется тем, что отдельные сенсорные клетки могут получать иннервацию от нескольких различных волокон.

Градуальная относительная специфичность вкусовых волокон создается 1) градуальной относительной специфичностью сенсорных клеток и 2) ветвлением вкусовых волокон, создающим рецептивные поля. Частота импульсации в одиночном афферентном волокне поэтому меняется как от качества стимула, так и от его концентрации. Разумеется, важным фактором является также степень, в какой стимулируемая область покрывает рецептивное поле волокна. Очевидным выводом в отношении кодирования стимула является то, что активность одного волокна не может дать однозначную информацию о качестве или концентрации. Толькосравнение уровня возбуждения в нескольких волокнах может выявить характерные распределения (паттерны) активности, которые говорят что-то о качестве стимула. При условии, что качество известно, частота импульсации в каждом отдельном волокне может служить мерой концентрации стимулирующего вещества. Отличительные черты вещества, следовательно, кодируются таким образом, что сложный, но характерный паттерн возбуждения создается одновременными, но разными ответами множества нейронов.

6. Первичный процесс

Условием возбуждения вкусового рецептора является взаимодействие между молекулами стимулирующего вещества и специально дифференцированными точками в мембране сенсорной клетки, где лежатрецепторные молекулы. Это взаимодействие называется первичным процессом; как полагают, он начинается с адсорбции молекулы вещества-стимула. Предполагают, что, когда это происходит, рецепторная-вероятно белковая-молекула изменяет свою структуру. Такое конформационное изменение рецепторной молекулы приводит в свою очередь к локальному изменению проницаемости мембраны клетки. Этот клеточный «усилительный механизм» мог бы послужить причиной генерации рецепторного потенциала.

К свидетельствам существования специфических рецепторных молекул относится наблюдение, что некоторые растительные вещества и препараты, например кокаин и гимневая кислота (получаемая из индийского растения Gymnema sylvestre), избирательно блокируют некоторые вкусовые ощущения. Очевидно, эта кислота связывается с рецепторными молекулами для сладких веществ, поскольку ее нанесение делает такие вещества безвкусными. Первичный процесс в мембранах вкусовых сенсорных клеток еще по-настоящему не объяснен, но, согласно рабочей гипотезе, он сходен с процессом в холинергических синапсах, где особые молекулы меняют проницаемость в особых точках мембраны.

7. Роль вкусовой чувствительности

Вкусовые луковицы на языке реагируют на стимулы, локализованные во рту. Иными словами, вкусовая чувствительность у всех позвоночных участвует в ориентации на близком расстоянии. В то же время у рыб чувство вкуса может служить также ориентации на далеком расстоянии. В воде вкусовые вещества перемещаются благодаря диффузии и конвекции из очень далеких источников к вкусовым луковицам, которые могут быть рассеяны по всей поверхности тела рыбы.

Помимо своей роли в ориентации на близком расстоянии чувство вкуса у человека выполняет важную функцию, запуская ряд рефлексов. Например, отмывание языка секретом из серозных желез контролируется рефлексом, который находится под действием вкусовых луковиц. Секреция слюны тоже запускается рефлекторно соответствующей стимуляцией вкусовых рецепторов. Даже состав слюны варьирует в зависимости от характера стимулов, действующих на сенсорные клетки, и вкусовые стимулы влияют также на выделение желудочного сока. Наконец, доказано, что рвота вызывается при участии вкусовой чувствительности.

Литература

1. Батуев А.С., Куликов Г.Л. Введение в физиологию сенсорных систем. -- М.: Высшая школа, 1983. -263 с.

2. Лекции по физиологии центральной нервной системы: Учебное пособие. Биолого-химический факультет УдГУ, Проничев И.В. -- Powered by swift.engine.edu, 2003. - 162 с.

3. Шульговский В. В. Основы нейрофизиологии: Учебное пособие для студентов вузов. -- М.: Аспект Пресс, 2000. с. 277.

4. Шульговский В. В. Физиология высшей нервной деятельности с основами нейробиологии: Учебник для студ.биол. специальностей вузов.- М.: Издательский центр «Академия», 2003. - 464 с.

Размещено на Allbest.ru

Подобные документы

    Неоднородная структура органа вкуса. Около 2000 вкусовых луковиц находится в ткани языка, неба, надгортанника и верхней части пищевода. Большинство из них размещены в слизистой мембране вкусовой луковицы. Нервные волокна и образование вкусовой почки.

    реферат , добавлен 02.03.2009

    Общая физиология сенсорных систем. Соматосенсорный, вкусовой и обонятельный анализаторы. Определение точек прикосновения. Определение пространственных порогов тактильной рецепции и локализации болевых рецепторов. Определение вкусовых ощущений и порогов.

    методичка , добавлен 07.02.2013

    Общая характеристика организма собаки, особенности его анатомии и физиологии, функции отдельных органов. Описание основных систем организма: системы костей, мышечной, кожной и нервной. Особенности органов зрения, вкуса, слуха осязания и обоняния.

    реферат , добавлен 09.11.2010

    Анатомия и физиология сердечно–сосудистой системы. Вены, распределение и ток крови, регулирование кровообращения. Давление крови, кровеносные сосуды, артерии. Определение показателя состояния осанки и плоскостопия у учащихся. Орган вкуса, виды сосочков.

    курсовая работа , добавлен 25.12.2014

    Изучение особенностей технологии разработки, видов (сироп, инъекции, ингаляции, гранулы, мазь, гель) и состава лекарственных форм для детей. Характеристика методов определения вкуса лекарств, числовых индексов и органолептической оценки корригенов.

    реферат , добавлен 27.01.2010

    Преддверно-улитковый орган (орган слуха и равновесия): структура и взаимодействие элементов, функции в жизнедеятельности организма человека. Распространение звука в органе слуха. Расположение органа обоняния и вкуса, закономерности их функционирования.

    презентация , добавлен 27.08.2013

    Строение и физиология сердца, его основные функции. Характеристика схемы и механизма кровообращения. Фазы сердечного цикла, электрическая активность клеток миокарда и параметры центральной гемодинамики. Понятие и особенности процесса иннервации сердца.

    презентация , добавлен 12.01.2014

    Нормальная физиология. Патологическая физиология. Хронологическая таблица. Классификация по группам и подгруппам. Химическое строение, механизм действия. Источники происхождения и др. Механизм биологической активности препаратов данной группы.

    курсовая работа , добавлен 03.07.2008

    Изучение анатомии и физиологии ЛОР-органов как дистантных анализаторов. Анатомия уха, носа, глотки, гортани. Физиология носа и придаточных пазух, слухового и вестибулярного анализатора. Дыхательная, защитная и голосообразовательная функции гортани.

    реферат , добавлен 29.01.2010

    Строение промежуточного мозга. Роль печени и поджелудочной железы в пищеварении. Торможение центральной нервной системы. Анатомия и физиология вегетативной нервной системы, ее возрастные особенности. Состав крови и физико-химические свойства плазмы.

Форма чувствительности, один из видов хеморецепции.

Специфика.

Чувствительность рецепторов полости рта к химическим раздражителям. Субъективно проявляется в виде вкусовых ощущений (горького, кислого, сладкого, соленого и их комплексов). При чередовании ряда химических веществ может возникать вкусовой контраст (после соленого пресная вода кажется сладкой). Целостной вкусовой образ возникает в силу взаимодействия вкусовых, тактильных, температурных, обонятельных рецепторов.

Обусловливание.

Для объяснения механизма формирования вкусовых ощущений выдвинуто две гипотезы: аналитическая и энзиматическая.


Психологический словарь . И.М. Кондаков . 2000 .

Смотреть что такое "вкусовая чувствительность" в других словарях:

    Вкусовая чувствительность - способность воспринимать и передавать информацию о химических стимулах посредством вкусовых сосочков или вкусовых луковиц, распложенных на поверхности языка, горла и гортани (приблизительно 10 000 бугорков размером до 2 мм с содержащимися в них… … Энциклопедический словарь по психологии и педагогике

    Чувствительность - I Чувствительность (sensibilitas) способность организма воспринимать различные раздражения, исходящие из внешней и внутренней среды, и реагировать на них. В основе Ч. лежат процессы рецепции, биологическое значение которых заключается в… … Медицинская энциклопедия

    Чувствительность - (sensibilitas) – способность организма воспринимать раздражители внешней и внутренней сред и соответственно на них реагировать, присуща и отдельным клеткам: болевая, вибрационная, висцеральная, вкусовая, глубокая, дифференциальная, кожная,… … Словарь терминов по физиологии сельскохозяйственных животных

    чувствительность вкусовая - (s. gustatoria) Ч. к химическому воздействию, реализующаяся возникновением ощущения вкуса воздействующего вещества … Большой медицинский словарь

    Чувствительность Вкусовая (Gustation) - вкус или вкусовое восприятие. Источник: Медицинский словарь … Медицинские термины

    ВКУС - ощущение, возникающее, когда в полость рта поступают различные пищевые и непищевые (например, некоторые химические и лекарственные) вещества. Вкусовые ощущения могут вызывать только те вещества, которые находятся в растворённом состоянии.… … Краткая энциклопедия домашнего хозяйства

    ВКУС - ощущение, возникающее при действии растворов химич. веществ на рецепторы органов вкуса у животных. Осн. вкусовые ощущения кислое, солёное, сладкое, горькое определяются как конфигурацией молекул веществ, адсорбирующихся на специфич. рецепторах… … Биологический энциклопедический словарь

    НЕРВЫ ЧЕЛОВЕКА - НЕРВЫ ЧЕЛОВЕКА. [Анатомия, физиология и патология нерва см. ст. Нервы в томе XX; там же (ст. 667 782) рисунки Нервы человека]. Ниже приведена таблица нервов, освещающая в систематическом порядке важнейшие моменты анатомии и физиологии каждого… … Большая медицинская энциклопедия

    Перцептивные способности младенцев (infant perceptual abilities) - Общая характеристика восприятия младенца В своих Principles of psychology («Принципы психологии») У. Джеймс так охарактеризовал перцептивный мир младенца: «Малыш, атакуемый раздражениями, которые одновременно идут от глаз, ушей, носа, кожи и… … Психологическая энциклопедия

    Языкоглоточный нерв - Схема языкоглоточного, блуждающего и добавочного нервов … Википедия

ВКУС И ОБОНЯНИЕ

X. Альтнер, И. Бекх

13.1. Характеристика химических ощущений

Ощущения вкуса и запаха обусловлены избирательной и высокочувствительной реакцией специализированных сенсорных клеток на присутствие молекул определенных соединений. В более широком смысле специфические реакции на химические вещества, например гормоныили нейромедиаторы, характерны для многих клеток и тканей. Однако вкусовые и обонятельные сенсорные клетки действуют как экстероцепторы; их реакции дают важную информацию о внешних стимулах, обрабатываемую особыми участками мозга, которые и отвечают за соответствующие ощущения. Другие хеморецепторные клетки служат интероцепторами, определяющими, например, уровень СО 2 (разд. 21.6).

Вкус и запах можно охарактеризовать и различить на основании морфологических и физиологических критериев. Различия между двумя этими видами ощущений наиболее очевидны при сравнении типов (качеств) адекватных для них стимулов (табл. 13.1). Другие характеристики, например чувствительность к стимулам или физическое состояние последних, хотя в целом и неодинаковы, но могут и взаимоперекрываться.

По сравнению с другими ощущениями у вкуса и обоняния значительно выше адаптируемость (ср. рис. 8.5). При длительном воздействии стимула возбуждение в афферентных путях заметно ослабляется, соответственно ослабляется и восприятие; например, уже очень быстро в среде даже с сильным запахом мы перестаем его ощущать. В равной мере характерна для химических ощущений и высокая чувствительность к определенным стимулам. Вместе с тем диапазон различаемых интенсивностей стимуляции сравнительно невелик (1:500), а порог различения высок. Показатель в степенной функции Стивенса ψ = k (φ - φо) a равен 0,4–0,6 для запаха и около 1–для вкусовых стимулов (ср. рис. 8.14).

Первичные процессы и химическая специфичность .

Первое событие при стимуляции хеморецепторов это, согласно современным представлениям, химическое взаимодействие, основанное на слабом связывании адекватной молекулы с рецепторным белком. Из вкусовых органов выделены белки с ферментативными свойствами, субстратная

специфичность и кинетические особенности которых такие же, как у самих рецепторов. Последующие события, приводящие к электрической реакции клеточной мембраны, неизвестны. Каждая рецепторная клетка высокоизбирательно реагирует на специфическую группу веществ. Малейшие изменения в структуре молекулы могут изменить характер ее восприятия или сделать ее неадекватным стимулом. Стимулирующая эффективность соединения, вероятно, наиболее существенно зависит от его размера (например, длины цепи) и внутреннего распределения электрических зарядов (т. е. расположения функциональных групп). Однако тот факт, что во многих случаях молекулы веществ, сильно различающихся по химическому строению, вызывают одинаковые обонятельные ощущения, пока не получил объяснения. Например, три приведенных ниже вещества, несмотря на их структурные различия, обладают одинаковым мускусным запахом (см. Beets в ).

Высказано предположение, что хеморецепторы содержат рецепторные центры, специфичные в отношении определенных групп веществ. Такая точка зрения подтверждается случаями частичной аносмии, т. е. нечувствительности к запаху некоторых, очень близких химических соединений. Сходным образом можно интерпретировать избирательное действие некоторых лекарственных препаратов на орган вкуса. Нанесение на язык гимнемата калия (вещества, выделенного из индийского растения Gymnema silvestre ) приводит к утрате только восприятия сладкого–сахар вызывает во рту ощущение песка. Белок, содержащийся в плодах западно–африканского растения Synsepalium dulcificum , изменяет кислый вкус на сладкий, так что лимон воспринимается как апельсин (см. Kurihara в ). Нанесение на язык кокаина вызывает последовательную утрату всех четырех типов вкусовых ощущений: горького, сладкого, соленого и, наконец, кислого.

Таблица 13.1. Классификация и характеристика химических чувств

Вкус

Запах

Рецепторы

Вторичные сенсорные клетки

Первичные сенсорные клетки; окончания

Локализация рецепторов

Язык

V, IX и Х черепно–мозговых нервов, Нос и глотка

Афферентные черепно–мозговые нервы

VII, IX

I, V, IX, Х

Уровни синаптических переключении в ЦНС

1.Продолговатый мозг

2.Вентральный таламус

3. Кора (постцентральная извилина)

C вязи с гипоталамусом

1. Обонятельная луковица

2.Конечный мозг (препириформная кора)

Связи с лимбической системой и гипоталамусом

Адекватные стимулы

Молекулы органических и неорганических веществ, главным образом нелетучих. Источник стимулов – вблизи рецепторов или в непосредственном контакте с ними

Почти исключительно молекулы органических летучих веществ в газовой фазе, растворяющиеся только вблизи рецептора. Источник стимулов, как правило, удален

Число качественно различимых стимулов

Мало

(4 основных)

Очень большое (тысячи) множество нечетко очерченных качеств

Абсолютная чувствительность

Сравнительно низкая

(Не менее 10 16 молекул в 1 мл раствора)

Очень высокая для некоторых веществ (10 7 молекул, у животных–до 10 2 –10 3 молекул в 1 мл воздуха)

Биологическая характеристика

Контактное чувство.

Используется для оценки качества пищи, регуляции ее потребления и переваривания (слюноотделительные рефлексы)

Дистантное чувство. Используется для гигиенической оценки окружающей среды и пищи; у животных–для поисков пищи, коммуникации и в половом поведении. Включает сильный эмоциональный компонент

13.2. Вкус

Рецепторы и нейроны

У взрослых сенсорные вкусовые клетки расположены на поверхности языка. Вместе с опорными клетками они образуют в эпителии его сосочков группы из 40–60 элементов–вкусовые почки (рис. 13.1). Крупные, окруженные валиком сосочки в основании языка содержат до 200 вкусовых почек каждый; в более мелких грибовидных и листовидных сосочках на его передней и боковых поверхностях их лишь по нескольку. Всего у взрослого человека несколько тысяч вкусовых почек. Железы, расположенные между сосочками, выделяют омывающую вкусовые почки жидкость. Чувствительные к стимуляции дистальные части рецепторных (сенсорных) клеток образуют микроворсинки, выходящие в общую камеру, которая через пору на поверхности сосочка сообщается с внешней средой (рис. 13.1). Стимулирующие молекулы, диффундируя через эту пору, достигают вкусовых клеток (рецепторов).

Подобно прочим вторичным сенсорным клеткам, вкусовые генерируют при стимуляции рецепторный потенциал. Это возбуждение синаптически передается афферентным волокнам

Рис. 13.1. Схема вкусовой почки, погруженной в сосочек языка; показаны базальная, сенсорные, опорные клетки и афферентные волокна соответствующего черепномозгового нерва

черепно–мозговых нервов, которые проводят его в мозг в виде импульсов. В этом процессе участвуют: барабанная струна–ветвь лицевого нерва (VII), иннервирующая переднюю и боковые части языка, и языкоглоточный нерв (IX), иннервирующий его заднюю часть (рис. 13.2). Разветвляясь, каждое афферентное волокно получает сигналы от рецепторов разных вкусовых почек.

Рис. 13.2. Схема языка человека. Окраской выделена его иннервация различными черепно–мозговыми нервами; контурами обведены области распределения разных типов сосочков (1–грибовидные, 2–окруженные валиком, 3–листовидные). Локализация зон восприятия определенных вкусовых качеств показана значками

Замещаются вкусовые клетки очень быстро; продолжительность жизни каждой из них всего около 10 дней, после чего из базальной клетки формируется новый рецептор. Он устанавливает связь с афферентными волокнами таким образом, что их специфичность не меняется. Механизм, обеспечивающий такое взаимодействие, до сих пор не ясен (см. Oakley в ).

Реакции клеток в волокон . Одиночная вкусовая клетка в большинстве случаев реагирует на вещества, представляющие различные вкусовые качества, деполяризуясь или гиперполяризуясь ими (рис. 13.3). Амплитуда рецепторного потенциала повышается вместе с концентрацией стимулирующего вещества. На тип и амплитуду ответа влияет также окружающая среда (рис. 13.4).

Генераторный потенциал вызывает соответствующий уровень возбуждения афферентных волокон, формируя реакцию, называемую «вкусовым профилем» (рис. 13.5). Их импульсация зависит от реакции рецепторов следующим образом: деполяризация последних оказывает возбуждающее, гиперполяризация – тормозное действие.

Многие волокна IX пары черепно–мозговых нервов особенно сильно реагируют на вещества с горьким вкусом. Волокна VII пары сильнее возбуждаются при действии соленого, сладкого и кислого: некоторые из них сильнее реагируют на сахар, чем на соль, другие–на соль, чем на сахар, и т.д. Эти вкусоспецифичные особенности


Рис. 13.3. Внутриклеточные записи рецепторных потенциалов двух вкусовых клеток (а, б) языка крысы. Стимулы: 0,5 моль/л NaCI; 0,02 моль/л солянокислого хинина; 0,01 моль/л HCI и 0,5 моль/л сахарозы. Длительность действия каждого стимула показана горизонтальным отрезком (по Sato , Beidler в с изменениями)

Рис. 13.4. Влияние окружающей среды на форму и амплитуду внутриклеточных записей рецепторного потенциала одиночной вкусовой клетки языка крысы, стимулируемого 0,02 моль/л солянокислого хинина. Окружающая среда: а– 41,4 ммоль/л NaCI; б–дистиллированная вода (по Sato , Beidler в с изменениями)

Рис. 13.5. Ответы двух одиночных волокон барабанной струны крысы на различные вещества: 0,1 моль/л NaCI;

0,5 моль/л сахарозы; 0,01 н. HCI; 0,02 моль/л солянокислого хинина (по с изменениями)

разных групп афферентов обеспечивают информацию о вкусовом качестве, т.е. виде стимулирующей молекулы, а общий уровень возбуждения определенной их популяции–об интенсивности стимула, т. е. о концентрации данного вещества.

Центральные нейроны. Вкусовые волокна VII и IX пар черепно–мозговых нервов оканчиваются в пределах или в непосредственной близости от ядра одиночного пути (nucleus solitarius ) продолговатого мозга. Это ядро через медиальную петлю (медиальный лемниск) связано с таламусом в области его вентрального постеромедиального ядра. Аксоны нейронов третьего порядка проходят через внутреннюю капсулу и оканчиваются в постцентральной извилине коры головного мозга. В результате обработки информации на перечисленных уровнях число нейронов с высокоспецифичной вкусовой чувствительностью возрастает. Ряд корковых клеток реагируют только на вещества с одним вкусовым качеством. Расположение таких нейронов указывает на высокую степень пространственной организации вкусового чувства. Другие клетки в этих центрах реагируют не только на вкус, но и на температурную и механическую стимуляцию языка.

Вкусовая чувствительность человека

Вкусовые качества . Человек различает четыре основных вкусовых качества: сладкое, кислое, горькое и соленое, которые достаточно хорошо характеризуются типичными для них веществами (табл. 13.2). Вкус сладкого ассоциируется главным образом с природными углеводами типа сахарозы и глюкозы; хлорид натрия–соленый; другие соли, например KCI , воспринимаются как соленые и горькие одновременно. Такие смешанные ощущения характерны для многих естественных вкусовых стимулов и соответствуют природе их компонентов. Например, апельсин–кисло–сладкий, а грейпфрут

Таблица 13.2. Вещества с характерным вкусом и эффективность их воздействия на человека (Pfaffmann в )

Качество

Вещество

Порог восприятия, моль/л

Горькое

Сульфат хинина

0,000008

Никотин

0,000016

Кислое

Соляная кислота

0,0009

Лимонная кислота

0,0023

Сладкое

Сахароза

0,01

Глюкоза

0,08

Сахарин

0,000023

Соленое

NaCI

0,01

CaCI 2

0,01

кисло–сладко–горький. У кислот вкус кислый; многие растительные алкалоиды горькие.

На поверхности языка можно выделить зоны специфической чувствительности. Горький вкус воспринимается главным образом основанием языка; другие вкусовые качества воздействуют на его боковые поверхности и кончик, причем эти зоны взаимоперекрываются (рис. 13.2).

Между химическими свойствами вещества и его вкусом не существует однозначной корреляции. Например, не только сахара, но и соли свинца сладкие, а самый сладкий вкус у искусственных заменителей сахара типа сахарина. Более того, воспринимаемое качество вещества зависит от его концентрации. Поваренная соль в низкой концентрации кажется сладкой и становится чисто соленой только при ее повышении. Чувствительность к горьким веществам существенно выше. Поскольку они часто ядовиты, эта их особенность предостерегает нас от опасности, даже если их концентрация в воде или пище очень низка. Сильные горькие раздражители легко вызывают рвоту или позывы на нее. Эмоциональные компоненты вкусовых ощущений широко варьируют в зависимости от состояния организма. Например, человек, испытывающий дефицит соли, считает вкус приемлемым, даже если ее концентрация в пище так высока, что нормальный человек от еды откажется.

Вкусовые ощущения, очевидно, весьма сходны у всех млекопитающих. Поведенческие эксперименты показали, что различные животные различают те же вкусовые качества, что и человек. Однако регистрация активности отдельных нервных волокон выявила и некоторые отсутствующие у человека способности. Например, у кошек обнаружены «водяные волокна», либо реагирующие только на раздражение водой, либо демонстрирующие вкусовой профиль, включающий воду в числе эффективных стимулов (см. Sato в ).

Биологическое значение . Биологическая роль вкусовых ощущений заключается не только в проверке съедобности пищи (см. выше); они также влияют на процесс пищеварения. Связи с вегетативными эфферентами позволяют вкусовым ощущениям влиять на секрецию пищеварительных желез, причем не только на ее интенсивность, но и на состав, в зависимости, например, от того, сладкие или соленые вещества преобладают в пище.

С возрастом способность к различению вкуса снижается. К этому же ведут потребление биологически активных веществ типа кофеина и интенсивное курение.

13.3. Обоняние

Поверхность слизистой носа увеличена за счет носовых раковин–гребней, выступающих с боков в просвет носовой полости. Обонятельная область, содержащая большинство сенсорных клеток,

Рис. 13.6. Схема полостей носоглотки человека (сагиттальный разрез). Обонятельная область ограничена верхней и средней раковинами. Показаны зоны, иннервируемые тройничным (V), языкоглоточным (IX) и блуждающим (X) нервами

ограничена здесь верхней носовой раковиной, хотя в средней также есть небольшие островки обонятельного эпителия (рис. 13.6).

Рецепторы

Обонятельный рецептор–это первичная биполярная сенсорная клетка, от которой отходят два отростка: сверху – дендрит, несущий реснички, от основания аксон. Реснички, внутренняя структура которых иная, чем у обычных киноцилий, погружены в слой покрывающей обонятельный эпителий слизи и не способны активно двигаться. Пахучие вещества, приносимые вдыхаемым воздухом, вступают в контакт с их мембраной–наиболее вероятным местом взаимодействия между стимулирующей молекулой и рецептором. Аксоны, направляющиеся в обонятельную луковицу, объединены в пучки (fila olfactoria ). Во всей слизистой носа находятся, кроме того, свободные окончания тройничного нерва, и некоторые из них также реагируют на запахи. В глотке обонятельные стимулы способны возбуждать волокна языкоглоточного и блуждающего нервов (рис. 13.6). Слой слизи, покрывающий обонятельный эпителий, предохраняет его от высыхания и постоянно возобновляется за счет секреции и перераспределения киноцилиями.

Молекулы пахучих веществ поступают к рецепторам (сенсорным клеткам) периодически: во время вдоха ноздрями и в меньшей степени–из полости рта, диффундируя через хоаны. Таким образом, во время еды у нас возникают смешанные ощущения, в которых сочетаются вкус и запах пищи.


Рис. 13.7. Одновременная запись электроольфактограммы (красная линия) и потенциалов действия одиночного рецептора обонятельного эпителия лягушки при стимуляции нитробензолом. Длительность стимула (черный отрезок) –1 с (Gesteland в )

Обнюхивание–характерное поведение многих млекопитающих – значительно увеличивает приток воздуха к обонятельной слизистой и, следовательно, концентрацию в ней стимулирующих молекул.

Всего у человека в обонятельной области площадью примерно 10 см 2 около 10 7 рецепторов. У других позвоночных их бывает намного больше (у немецкой овчарки, например, 2,2–10 8). Обонятельные клетки, как и вкусовые, постоянно замещаются и из–за этого, по–видимому, не все функционируют одновременно.

Электроды, помещенные на обонятельный эпителий позвоночных, при действии запаха регистрируют медленные потенциалы сложной формы с амплитудой несколько милливольт. Эти электроольфактограммы (ЭОГ, рис. 13.7, см. Ottoson в ), как и электроретинограммы (ЭРГ), отражают суммарную активность многих клеток, поэтому не дают информации о свойствах индивидуальных рецепторов. Записать активность одиночного рецептора в обонятельной слизистой позвоночных удавалось только случайно (рис. 13.7). Показано, что спонтанная активность этих клеток очень низка (несколько импульсов в секунду), и каждая из них реагирует на множество веществ. Как и в случае вкусового профиля, можно построить спектр ответов одиночного обонятельного рецептора (см. Gesfeland в ).

Типы запахов

Человек способен различать запах тысяч различных веществ. Обонятельные ощущения можно классифицировать на основе определенного их сходства, выявив определенные типы, или качества, запаха. Однако сделать это гораздо труднее, чем в случае вкусовых ощущений. Неопределенность категорий очевидна и в том, что классификации, предложенные разными авторами, неодинаковы. Корреляция между химической структурой и качеством запаха еще меньше, чем в случае вкусовых раздражителей. Табл. 13.3 показывает, что классы запахов, как правило, называют по их природным

Таблица 13.3. Отличительные характеристики классов запахов (Amoor , Skramlik )

Класс запахов

Известные типичные вещества

Сходство с запахом

“Стандартный” источник

Цветочный

Гераниол

Розы

d –1–β–фенилэтилметилкарбинол

Эфирный

Бензилацетат

Груши

1,2–дихлорэтан

Мускусный

Мускон

Мускуса

3–метилциклопентадекан–1 –он

Камфарный

Цинеол, камфара

Эвкалипта

1,8–цинеол

Гнилостный

Сероводород

Тухлых яиц

Диметилсульфид

Едкий

Муравьиная кислота, уксусная кислота

Уксуса

Муравьиная кислота

источникам или типичным веществам; каждую категорию можно также охарактеризовать «стандартным» источником.

Нейрофизиологические основы отнесения запахов к тому или иному классу до сих пор не обнаружены. Точка зрения, согласно которой группы, объединяющие близкие по запаху вещества, чем–то отличаются друг от друга, подтверждается случаями частичного нарушения обоняния (частичной аносмии). При таких дефектах (по крайней мере некоторые из них генетической природы) порог восприятия определенных обонятельных стимулов повышается. При этом часто он изменяется для нескольких веществ, относящихся, как правило, к одному и тому же классу запахов. Экспериментальные данные, применяемые для классификации запахов, можно получить при анализе перекрестной адаптации. Она заключается в том, что когда длительное действие какого–либо запаха вызывает повышение порога его восприятия, чувствительность к запаху некоторых других веществ также понижается (рис. 13.8). Изучая количественно такие взаимные изменения порогов, можно построить схему перекрестных адаптационных взаимоотношений (рис. 13.9). Однако и это не достаточно для однозначной и детальной классификации множества пахучих веществ по вызываемым ими ощущениям .

При интерпретации особенностей человеческого обоняния следует учитывать, что к пахучим веществам чувствительны и окончания тройничного нерва в слизистой носа, а также языкоглоточного и блуждающего нервов в глотке. Все они участвуют в формировании обонятельного ощущения (рис. 13.6). Их роль, никак не связанная с обонятельным нервом, сохраняется и при нарушениях функции обонятельного эпителия вследствие, например, инфекции (гриппа), опухолей (и связанных с ними операций на мозге) или черепно–мозговых травм. В подобных случаях, объединяемых термином гипосмия, порог восприятия существенно выше нормальною, однако способность различать запахи снижается лишь незначительно. При гипофизарном гипогонадизме (синдроме Кальмана) обоняние обеспечивается исключительно этими черепно–мозговыми нервами, поскольку при этом врожденном заболевании происходит аплазия обонятельных луковиц. Вредные температурные и химические воздействия могут вызвать обратимую или необратимую острую или хроническую гипосмию или аносмию в зависимости от природы и способа воздействия. Наконец, чувствительность к запахам снижается с возрастом.

Чувствительность; кодирование

Обоняние у человека очень чувствительно, хотя известно, что у некоторых животных этот аппарат еще более совершенен. В табл. 13.4 приведены концентрации двух пахучих веществ, достаточные для того, чтобы вызвать у человека соответствующие ощущения. При действии очень малых их количеств возникающее ощущение неспецифично; лишь после превышения некоторого порогового уровня запах не только выявляется, но и распознается. Например, скатол в низких концентрациях пахнет вполне приемлемо; при более высоких–отталкивающе. Таким образом, необходимо различать порог выявления и порог распознавания запаха.

Такие пороги, определяемые по ответам испытуемых или поведенческим реакциям животных, не позволяют установить чувствительность одиночной сенсорной клетки (рецептора). Однако, зная пространственную протяженность обонятельного органа человека и число рецепторов в его составе, можно вычислить и их чувствительность. Такие расчеты показывают, что одиночная сенсорная клетка деполяризуется и генерирует потенциал действия в ответ на одну, самое большее на несколько молекул пахучего вещества. Конечно, поведенческая реакция требует активации значительного числа рецепторов т.е. превышения определенного критического уровня отношения сигнал/шум в афферентных волокнах.

Кодирование. Кодирование обонятельных стимулов рецепторами пока можно описать только в первом приближении. Во–первых, индивидуальная сенсорная клетка способна реагировать на множество различных пахучих веществ. Во–вторых,

Рис. 13.8. Повышение интенсивности ощущения при увеличении интенсивности стимуляции (пропанолом) без адаптации (черная прямая) и после адаптации к пентанолу (красная кривая с черными треугольниками) (Cain , Engen в с изменениями)

Рис. 13.9. Перекрестные адаптационные взаимоотношения семи пахучих веществ: 1–цитраль, 2–циклопентанон, 3–бензилацетат, 4–сафрол, 5–м–ксилен, 6–метилсалицилат,7–бутилацетат.Реципрокные взаимодействия, как правило, неравносильны. Степень повышения порога восприятия обозначена следующим образом: черные линии–очень большая; красные сплошные линии большая; красные прерывистые линии–умеренная; красный пунктир–слабая (по с изменениями)

Таблица 13.4. Порог выявления для запахов масляной кислоты и бутилмеркаптана (Neuhaus , Stuiver )

Вещество г

Число молекул в 1 мл воздуха

Концентрация

вещества вблизи

источника стимула, моль/л

Масляная кислота

2,4–10 9

10 –10

Бутилмеркаптан

10 7

2,7– 10 –12

у различных обонятельных рецепторов (как и у вкусовых) перекрывающиеся профили реакции. Таким образом, каждое пахучее вещество специфически возбуждает целую популяцию сенсорных клеток; при этом концентрация вещества отражается в общем уровне возбуждения.

Центральная обработка обонятельной информации

Обонятельная луковица . Гистологически обонятельная луковица подразделяется на несколько слоев, характеризующихся клетками специфической формы, от которых отходят отростки определенного типа с характерными связями между ними. Основные черты обработки информации здесь следующие: значительная конвергенция сенсорных клеток на митральных; выраженные тормозные механизмы и эфферентный контроль входной импульсации. В клубочковом (гломерулярном) слое аксоны приблизительно 1000 рецепторов оканчиваются на первичных дендритах одной митральной клетки (рис. 13.10). Эти дендриты образуют также реципрокные дендродендритные синапсы с перигломерулярными клетками. Митрально–перигломерулярные контакты–возбуждающие, противоположные по направлению–тормозные. Аксоны перигломерулярных клеток оканчиваются на дендритах митральных клеток соседнего клубочка. Такая организация позволяет модулировать локальный дендритный ответ, обеспечивая аутоторможение и торможение окружающих клеток. Клетки–зерна также образуют дендродендритные синапсы с митральными клетками (в данном случае–с их вторичными деидритами) и тем самым влияют на генерирование ими импульсов. Входы на митральных клетках тоже тормозные, т.е. реципрокные контакты участвуют в аутоторможении. Наконец, клетки–зерна образуют синапсы с коллатералями митральных клеток, а также с эфферентными (бульбопетальными) аксонами различного происхождения. Некоторые из этих центробежных волокон приходят из контралатеральной луковицы через переднюю комиссуру (спайку).

Особенность торможения, вызываемого лишенными аксонов клетками–зернами,–то, что в отличие от типичного торможения по Реншоу они могут активироваться частично, т. е. с пространственным градиентом. Эта

Рис. 13.10. Схема нейронных связей в обонятельной луковице. В клубочках (гломерулах) аксоны обонятельных рецепторов оканчиваются на первичных дендритах (D 1) митральных клеток. Перигломерулярные клетки и клетки–зерна образуют реципрокные синапсы с первичными и вторичными (D 2) дендритами митральных клеток. К–коллатерали. Направление синаптической передачи показано стрелками: возбуждающие влияния –черными, тормозные –красными (по с обобщениями и изменениями)

картина очень сложных взаимодействий вполне сравнима с известной в сетчатке, хотя обработка информации основана на другом принципе клеточной организации . Все описанное выше–лишь грубая схема происходящих в обонятельной луковице событий. Помимо митральных, к вторичным нейронам относятся и разнообразные пучковатые клетки, отличающиеся своими проекциями и медиаторами.

Центральные связи . Аксоны митральных клеток образуют латеральный обонятельный тракт, направляющийся в препириформную кору и пириформную долю. Синапсы с нейронами высших порядков обеспечивают связь с гиппокампом и, через миндалину, с вегетативными ядрами гипоталамуса. Нейроны, отвечающие на обонятельные стимулы, обнаружены также в ретикулярной формации среднего мозга и в орбитофронтальной коре.

Влияние обоняния на другие функциональные системы . Прямая связь с лимбической системой (см. разд. 16.6) объясняет выраженный эмоциональный компонент обонятельных ощущений. Запахи могут вызывать удовольствие или отвращение (гедонические компоненты), влияя соответствующим образом на аффективное состояние организма. Кроме того, нельзя недооценивать значение обонятельных стимулов в регуляции полового поведения, хотя результаты экспериментов на животных, особенно опытов по блокаде обоняния у грызунов, нельзя прямо переносить на человека. На животных также показано, что ответы нейронов обонятельного тракта можно изменить инъекцией тестостерона. Таким образом, на их возбуждение влияют и половые гормоны.

Функциональные нарушения . Помимо гипосмии и аносмии встречаются неправильное восприятие запаха (иаросмия) и обонятельные ощущения в отсутствие пахучих веществ (обонятельные галлюцинации). Причины таких расстройств различны. Например, они могут возникать при аллергических ринитах и травмах головы. Обонятельные галлюцинации неприятного характера (какосмия) наблюдаются главным образом при шизофрении.

13.4. Литература

Учебники и руководства

1. Beidler LM. (Ed.). Chemical Senses. Part 1. Olfaction. Part 2. Taste. Handbook of Sensory Physiology, Vol. IV, Berlin–Heidelberg–New York, Springer, 1971.

2. PfaffD. (Ed.). Taste. Olfaction and Central Nervous System. New York, Rockfeller University Press, 1985.

Оригинальные статьи и обзоры

3. Breipohl W. (Ed.). Olfaction and Endocrine Regulation, London, IRL Press, 1982.

4. Denton D. A., Coghlan J. P. (Eds.). Olfaction and Taste, Vol. V, New York, Academic Press, 1975.

5. Hayushi Т . (Ed.). Olfaction and Taste, Vol. II, Oxford–London New York–Paris, Pergamon Press, 1967.

6. Kare M. R., Mailer 0. (Eds.). The Chemical Senses and Nutrition, New York–San Francisco London, Academic Press, 1977.

7. Koster E. Adaptation and Cross Adaptation in Olfaction, Rotterdam, Bronder, 1971.

8. Le Magnen J., Mac Lead P. (Eds.). Olfaction and Taste., Vol. VI, London–Washington DC, IRL Press, 1977.

9. Norris D. M. (Ed.). Perception of Behavioral Chemicals, Amsterdam–New York–Oxford, Elsevier/North Holland, 1981.

10. Pfaffman С . (Ed.). Olfaction and Taste, Vol. Ill, New York, Rockfeller University Press, 1969.

11. Sato Т . Receptor potential in rat taste cells. In: Autrum H., Ottoson D., PerlE.R., Schmidt R.F., Shimazu H., Willis W.D. (Eds.). Progress in Sensory Physiology, Vol. 6, p. 1–37, Berlin–Heidelberg–New York–Tokyo, Springer, 1986.

12. Schneider D. (Ed.). Olfaction and Taste, Vol. IV, Stuttgart, Wiss, Verlagsges, 1972.

13. Shepherd G. M. Synaptic organization of the mammalian olfactory bulb. Physiol. Rev. 52, 864, (1972).

14. Van der Starre H. (Ed.). Olfaction and Taste. Vol. VII, London–Washington DC, IRL Press, 1980.

15. Zotterman Y. (Ed.). Olfaction and Taste. Vol. I. Oxford–London–New York Paris, Pergamon Press, 1963.

16. Chemical Senses. London. IRL Press (Published in regular installments).